Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters








Year range
1.
Article | IMSEAR | ID: sea-189540

ABSTRACT

In preparation for a legal implementation of EU-regulation 1829/2003, the Norwegian Scientific Committee for Food Safety (VKM) has been requested by the Norwegian Environment Agency (former Norwegian Directorate for Nature Management) and the Norwegian Food Safety Authority (NFSA) to conduct final food/feed and environmental risk assessments for all genetically modified organisms (GMOs) and products containing or consisting of GMOs that are authorized in the European Union under Directive 2001/18/EC or Regulation 1829/2003/EC. The request covers scope(s) relevant to the Gene Technology Act. The request does not cover GMOs that VKM already has conducted its final risk assessments on. However, the Agency and NFSA requests VKM to consider whether updates or other changes to earlier submitted assessments are necessary. The insect-resistant and glyphosate-tolerant genetically modified maize MON 89034 x NK 603 from Monsanto (Unique Identifier MON-89Ø34-3 × MON-ØØ6Ø3-6) was approved under Regulation (EC) No 1829/2003 in the EU for food and feed uses, import and processing on 28 July 2010 (Commission Decision 2010/420/EC). Genetically modified maize MON 890314 x NK 603 has previously been risk assessed by the VKM Panel on Genetically Modified Organisms (GMO), commissioned by the Norwegian Food Safety Authority and the Norwegian Environment Agency related and to the EFSA public hearing of the applications EFSA/GMO/NL/2007/38 and EFSA/GMO/NL/2009/72 in 2007 and 2009/2010 (VKM 2008a, VKM 2010a). In addition, the parental lines MON 89034 and NK 603 have been evaluated by the VKM GMO Panel as single events and as a component of several stacked GM maize events (VKM 2005a,b,c,d,e, VKM 2007a,b, VKM 2008b,c,d, VKM 2009a,b, VKM 2010 a,b, VKM 2011, VKM 2012a,b, VKM 2013 a,b, VKM 2014). The food/feed and environmental risk assessment of the maize MON 89034 x NK 603 is based on information provided by the applicant in the applications EFSA/GMO/NL/2007/38 EFSA/GMO/NL/2009/72 and scientific comments from EFSA and other member states made available on the EFSA website GMO Extranet. The risk assessment also considered other peer-reviewed scientific literature as relevant. The VKM GMO Panel has evaluated MON 89034 x NK 603 with reference to its intended uses in the European Economic Area (EEA), and according to the principles described in the Norwegian Food Act, the Norwegian Gene Technology Act and regulations relating to impact assessment pursuant to the Gene Technology Act, Directive 2001/18/EC on the deliberate release into the environment of genetically modified organisms, and Regulation (EC) No 1829/2003 on genetically modified food and feed. The Norwegian Scientific Committee for Food Safety has also decided to take account of the appropriate principles described in the EFSA guidelines for the risk assessment of GM plants and derived food and feed (EFSA 2011a), the environmental risk assessment of GM plants (EFSA 2010a), selection of comparators for the risk assessment of GM plants (EFSA 2011b) and for the post-market environmental monitoring of GM plants (EFSA 2011c). The scientific risk assessment of maize MON 89034 x NK 603 include molecular characterisation of the inserted DNA and expression of novel proteins, comparative assessment of agronomic and phenotypic characteristics, nutritional assessments, toxicology and allergenicity, unintended effects on plant fitness, potential for gene transfer, effects on biogeochemical processes and interactions between the GM plant and target and non-target organisms. It is emphasized that the VKM mandate does not include assessments of contribution to sustainable development, societal utility and ethical considerations, according to the Norwegian Gene Technology Act and Regulations relating to impact assessment pursuant to the Gene Technology Act. These considerations are therefore not part of the risk assessment provided by the VKM Panel on Genetically Modified Organisms. Likewise, the VKM mandate does not include evaluations of herbicide residues in food and feed from genetically modified plants. The hybrid maize MON 89034 x NK 603 has been produced by conventional crosses between inbred lines containing MON 89034 and NK 603 events to combine resistance to certain lepidopteran pests and to confer tolerance towards glyphosate-containing herbicides. Maize MON 89034 was developed to provide protection against specific lepidopteran target pest, including Ostrinia nubilalis, S podoptera spp. and Agrotis ipsilon. Protection is achieved through expression in the plant of two insecticidal Cry proteins, Cry1A.105 and Cry2Ab2, derived from Baci llus thuringiensis subsp. a izawai and kurstaki. Maize NK 603 has been developed to provide tolerance to glyphosate by the introduction, of a gene coding for 5enolpyruvylshikimate-3-phosphate synthase (EPSPS) from Agrobacterium sp. strain CP4 (CP4 EPSPS). Molecular Characterisation: Southern and PCR analyses indicate that the recombinant inserts in the single maize events MON 89034 and NK 603 are retained in maize stack MON 89034 x NK603. Genetic stability of the inserts has previously been demonstrated in the parental lines MON 89034and NK603. The level of Cry1A.105, Cry2Ab2 and CP4 EPSPS proteins in grain and forage from the stacked event are comparable to the levels in the corresponding single events. Phenotypic analyses also indicate stability of the insect resistance and herbicide tolerance traits of the stacked event. Based on current knowledge and the previous assessments of the parental maize events, the VKM GMO Panel considers the molecular characterisation of maize MON 89034 x NK 603 satisfactory. 6 VKM Report 2016: 17. Comparative Assessment: The applicant has performed comparative analyses of data from field trials located at representative sites and environments in Argentina in 2004/2005 and Europe in 2007. With the exception of small intermittent variations and the insect resistance and herbicide tolerance conferred by the Cry1A.105, Cry2Ab2 and CP4 EPSPS proteins, the results showed no biologically relevant differences between maize stack MON 89034 x NK 603 and conventional control. Based on the assessment of available data, the VKM GMO Panel concludes that maize MON 89034 x NK 603 is compositionally, agronomical and phenotypically equivalent to its conventional counterpart, except for the new proteins. Food/feed Safety Assessment: A whole food feeding study on broilers has not indicated any adverse health effects of maize MON 89034 x NK 603, and shows that it is nutritionally equivalent to conventional maize varieties. The Cry1A.105, Cry2Ab2, and CP4 EPSPS proteins do not show sequence resemblance to other known toxins or IgE allergens, nor have they been reported to cause IgE mediated allergic reactions. However, some studies have indicated a potential role of Cry-proteins as adjuvants in allergic reactions. Based on current knowledge, the VKM GMO Panel concludes that maize MON 89034 x NK 603 is nutritionally equivalent to conventional maize varieties. It is unlikely that the Cry1A.105, Cry2Ab2, and CP4 EPSPS proteins will cause toxic or IgE-mediated allergic reactions to food or feed based on maize MON 89034 x NK 603 compared to conventional maize. Environmental Risk: Considering the intended uses of maize MON 89034 x NK603, excluding cultivation, the environmental risk assessment is concerned with accidental release into the environment of viable grains during transportation and processing, and indirect exposure, mainly through manure and faeces from animals fed grains from maize MON 89034 x NK603. Maize MON 89034 x NK 603 has no altered survival, multiplication or dissemination characteristics, and there are no indications of an increased likelihood of spread and establishment of feral maize plants in the case of accidental release into the environment of seeds from maize MON 89034 x NK603. Maize is the only representative of the genus Zea in Europe, and there are no cross-compatible wild or weedy relatives outside cultivation. The VKM GMO Panel considers the risk of gene flow from occasional feral GM maize plants to conventional maize varieties to be negligible in Norway. Considering the intended use as food and feed, interactions with the biotic and abiotic environment are not considered by the GMO Panel to be an issue. 7 VKM Report 2016: 17. Overall Conclusion: Based on current knowledge, the VKM GMO Panel concludes that maize MON 89034 x NK 603 is compositionally, nutritionally, agronomically and phenotypically equivalent to its conventional counterpart except for the new proteins. It is unlikely that the Cry1A.105, Cry2Ab2 and CP4 EPSPS proteins will cause an increased risk of toxic or IgE-mediated allergic reactions to food or feed based on maize MON 89034 x NK 603 compared to conventional maize varieties. The VKM GMO Panel concludes that maize MON 89034 x NK603, based on current knowledge, is comparable to conventional maize varieties concerning environmental risk in Norway with the intended usage.

2.
Article | IMSEAR | ID: sea-189538

ABSTRACT

In preparation for a legal implementation of EU-regulation 1829/2003, the Norwegian Scientific Committee for Food Safety (VKM) has been requested by the Norwegian Environment Agency and the Norwegian Food Safety Authority (NFSA) to conduct final food/feed and environmental risk assessments for all genetically modified organisms (GMOs) and products containing or consisting of GMOs that are authorized in the European Union under Directive 2001/18/EC or Regulation 1829/2003/EC. The request covers scope(s) relevant to the Gene Technology Act. The request does not cover GMOs that VKM already has conducted its final risk assessments on. However, the Agency and NFSA requests VKM to consider whether updates or other changes to earlier submitted assessments are necessary. The insect-resistant and glyphosate-tolerant genetically modified maize MON 89034 x MON 88017 from Monsanto (Unique Identifier MON-89Ø34-3 × MON-88Ø17-3) was approved under Regulation (EC) No 1829/2003 in the EU for food and feed uses, import and processing on 17th of June 2011 (Commission Decision 2011/366/EC). Genetically modified maize MON 890314 x MON 88017 has previously been risk assessed by the VKM Panel on Genetically Modified Organisms (GMO), commissioned by the Norwegian Food Safety Authority and the Norwegian Environment Agency related and to the EFSA public hearing of the applications EFSA/GMO/NL/2007/39 and EFSA/GMO/BE/2009/71 in 2007 and 2009/2010 (VKM 2008a, VKM 2010a). In addition, the parental lines MON 89034 and MON 88017 have been evaluated by the VKM GMO Panel as single events and as a component of several stacked GM maize events (VKM 2007a,b, VKM 2008b, VKM 2009a,b,c, VKM 2010b,c, VKM 2012, VKM 2013, VKM 2014). The food/feed and environmental risk assessment of the maize MON 89034 x MON 88017 is based on information provided by the applicant in the applications EFSA/GMO/NL/2007/39 EFSA/GMO/BE/2009/71 and scientific comments from EFSA and other member states made available on the EFSA website GMO Extranet. The risk assessment also considered other peer-reviewed scientific literature when relevant. The VKM GMO Panel has evaluated MON 89034 x MON 88017 with reference to its intended uses in the European Economic Area (EEA), and according to the principles described in the Norwegian Food Act, the Norwegian Gene Technology Act and regulations relating to impact assessment pursuant to the Gene Technology Act, Directive 2001/18/EC on the deliberate release into the environment of genetically modified organisms, and Regulation (EC) No 1829/2003 on genetically modified food and feed. The Norwegian Scientific Committee for Food Safety has also decided to take account of the appropriate principles described in the EFSA guidelines for the risk assessment of GM plants and derived food and feed (EFSA 2011a), the environmental risk assessment of GM plants (EFSA 2010), selection of comparators for the risk assessment of GM plants (EFSA 2011b) and for the post-market environmental monitoring of GM plants (EFSA 2011c). The scientific risk assessment of maize MON 89034 x MON 88017 include molecular characterisation of the inserted DNA and expression of novel proteins, comparative assessment of agronomic and phenotypic characteristics, nutritional assessments, toxicology and allergenicity, unintended effects on plant fitness, potential for gene transfer, effects on biogeochemical processes and interactions between the GM plant and target and non-target organisms. It is emphasised that the VKM mandate does not include assessments of contribution to sustainable development, societal utility and ethical considerations, according to the Norwegian Gene Technology Act and Regulations relating to impact assessment pursuant to the Gene Technology Act. These considerations are therefore not part of the risk assessment provided by the VKM Panel on Genetically Modified Organisms. Likewise, the VKM mandate does not include evaluations of herbicide residues in food and feed from genetically modified plants.The hybrid maize MON 89034 x MON 88017 has been produced by conventional crosses between inbred lines containing MON 89034 and MON 88017 events to combine resistance to certain coleopteran and lepidopteran pests, and to confer tolerance towards glyphosate-containing herbicides. Maize MON 89034 was developed to provide protection against specific lepidopteran target pest, including Ostrinia nubilalis , S podoptera spp. and Agrotis ipsilon. Protection is achieved through expression in the plant of two insecticidal Cry proteins, Cry1A.105 and Cry2Ab2, derived from Bacillus thuringiensis subsp. a izawai and kurstaki. Maize MON 88017 was developed to express a modified Cry3Bb1 insecticidal protein, derived from B. thuringiensis subsp. kumamotoensis , which confers protection against coleopteran target pests belonging to the genus Diabrotica such as Western corn rootworm ( D . virgifera virgifera ). MON 88017 is also developed to provide tolerance to the herbicidal active substance glyphosate by the introduction of a gene coding for the enzyme 5enolpyruvylshikimate-3-phosphate synthase (EPSPS), from Agrobacterium tumefaciens strain CP4 (CP4 EPSPS). Molecular Characterisation: Southern and PCR analyses indicate that the recombinant inserts in the single maize events MON 89034 and MON 88017 are retained in the stacked event MON 89034 x MON 88017. Genetic stability of the inserts has previously been demonstrated in the single events. The levels of Cry1A.105, Cry2Ab2, CP4 EPSPS and Cry3Bb1 proteins in grain and forage from the stacked event are comparable to the levels in the corresponding single events. Phenotypic analyses also indicate stability of the insect resistance and herbicide tolerance traits of the stacked event. Based on current knowledge and the previous assessments of the parental maize events, the VKM GMO Panel considers the molecular characterisation of maize MON 89034 x MON 88017 satisfactory. Comparative Assessment: Comparative analyses of maize MON 89034 x MON 88017 and its conventional counterpart have been performed by the applicant during field trials located at representative sites and environments in USA during 2004, and in Europe in 2007. Several different conventional maize varieties were included in the field trials and used as references. With the exception of small variations, and the insect resistance and herbicide tolerance conferred by the Cry3Bb1, Cry1A105, Cry2Ab2, and CP4 EPSPS proteins, the results from these studies showed no biologically relevant differences between the maize stack MON 89034 x MON 88017 and its conventional counterpart. Based on the assessment of available data, the VKM GMO Panel concludes that maize MON 89034 x MON 88017 is compositionally, agronomically and phenotypically equivalent to its conventional counterpart, except for the new proteins. Food and Feed Safety Assessment: A whole food feeding study performed on broilers indicates no adverse health effects of maize MON 89034 x MON 88017, and shows that it is nutritionally equivalent to conventional maize varieties. The Cry1A.105, Cry2Ab2, Cry3Bb1 and CP4 EPSPS proteins do not show relevant sequence resemblance to other known toxins or IgE-allergens, nor have they been reported to cause IgE-mediated allergic reactions. However, some studies have indicated a potential role of Cry-proteins as adjuvants in allergic reactions. Based on current knowledge, the VKM GMO Panel concludes that maize MON 89034 x MON 88017 is nutritionally equivalent to conventional maize varieties. It is unlikely that the Cry1A.105, Cry2Ab2, Cry3Bb1 and CP4 EPSPS proteins will cause toxic or IgE-mediated allergic reactions to food or feed derived from maize MON 89034 x MON 88017 compared to conventional maize. Environmental Risk: Considering the intended uses of maize MON 89034 x MON 88017, excluding cultivation, the environmental risk assessment is concerned with accidental release into the environment of viable grains during transportation and processing, and indirect exposure, mainly through manure and faeces from animals fed grains from maize MON 89034 x MON 88017. Maize MON 89034 x MON 88017 has no altered survival, multiplication or dissemination characteristics, and there are no indications of an increased likelihood of spread and establishment of feral maize plants in the case of accidental release into the environment of seeds from maize MON 89034 x MON 88017. Maize is the only representative of the genus Zea in Europe, and there are no cross-compatible wild or weedy relatives outside cultivation. The VKM GMO Panel considers the risk of gene flow from occasional feral GM maize plants to conventional maize varieties to be negligible in Norway. Considering the intended use as food and feed, interactions with the biotic and abiotic environment are not considered by the GMO Panel to be an issue. Overall Conclusion: Based on current knowledge, the VKM GMO Panel concludes that maize MON 89034 x MON 88017 is compositionally, nutritionally, agronomically and phenotypically equivalent to its conventional counterpart except for the new proteins. It is unlikely that the Cry1A.105, Cry2Ab2, CryBb1 and CP4 EPSPS proteins will cause an increased risk of toxic or IgE-mediated allergic reactions to food or feed based on maize MON 89034 x MON 88017 compared to conventional maize varieties. The VKM GMO Panel concludes that maize MON 89034 x MON 88017, based on current knowledge, is comparable to conventional maize varieties concerning environmental risk in Norway with the intended usage.

3.
Article | IMSEAR | ID: sea-189537

ABSTRACT

In preparation for a legal implementation of EU-regulation 1829/2003, the Norwegian Scientific Committee for Food Safety (VKM) has been requested by the Norwegian Environment Agency and the Norwegian Food Safety Authority (NFSA) to conduct final food/feed and environmental risk assessments for all genetically modified organisms (GMOs) and products containing or consisting of GMOs that are authorized in the European Union under Directive 2001/18/EC or Regulation 1829/2003/EC. The request covers scope(s) relevant to the Gene Technology Act. The request does not cover GMOs that VKM already has conducted its final risk assessments on. However, the Agency and NFSA requests VKM to consider whether updates or other changes to earlier submitted assessments are necessary. The insect-resistant and glyphosate-tolerant genetically modified maize MON 88017 x MON 810 from Monsanto (Unique Identifier DAS-MON 88017-3 x MON-ØØ81Ø-6) was approved under Regulation (EC) No 1829/2003 in the EU for food and feed uses, import and processing on 28th of July 2010 (Commission Decision 2010/429/EC). Genetically modified maize MON 88017 x MON 810 has previously been risk assessed by the VKM Panel on Genetically Modified Organisms (GMO), commissioned by the Norwegian Food Safety Authority related to the EFSA public hearing of the application in 2007 (VKM 2007a). In addition, MON 88017 and MON 810 has been evaluated by the VKM GMO Panel as single events and as a component of several stacked GM maize events and Regulation (EC) 1829/2003 and Directive 2001/18/EC (VKM 2005a,b,c, VKM 2007b,c,d, VKM 2008, VKM 2009, VKM 2010 a,b,c, VKM 2012, VKM 2013, VKM 2016). The food/feed and environmental risk assessment of the maize MON 88017 x MON 810 is based on information provided by the applicant in the application EFSA/GMO/CZ/2006/33 and scientific comments from EFSA and other member states made available on the EFSA website GMO Extranet. The risk assessment also considered other peer-reviewed scientific literature as relevant. The VKM GMO Panel has evaluated MON 88017 x MON 810 with reference to its intended uses in the European Economic Area (EEA), and according to the principles described in the Norwegian Food Act, the Norwegian Gene Technology Act and regulations relating to impact assessment pursuant to the Gene Technology Act, Directive 2001/18/EC on the deliberate release into the environment of genetically modified organisms, and Regulation (EC) No 1829/2003 on genetically modified food and feed. The Norwegian Scientific Committee for Food Safety has also decided to take account of the appropriate principles described in the EFSA guidelines for the risk assessment of GM plants and derived food and feed (EFSA 2011a), the environmental risk assessment of GM plants (EFSA 2010), selection of comparators for the risk assessment of GM plants (EFSA 2011b) and for the post-market environmental monitoring of GM plants (EFSA 2011c). The scientific risk assessment of maize MON 88017 x MON 810 include molecular characterisation of the inserted DNA and expression of novel proteins, comparative assessment of agronomic and phenotypic characteristics, nutritional assessments, toxicology and allergenicity, unintended effects on plant fitness, potential for gene transfer, effects on biogeochemical processes and interactions between the GM plant and target and non-target organisms. It is emphasized that the VKM mandate does not include assessments of contribution to sustainable development, societal utility and ethical considerations, according to the Norwegian Gene Technology Act and Regulations relating to impact assessment pursuant to the Gene Technology Act. These considerations are therefore not part of the risk assessment provided by the VKM Panel on Genetically Modified Organisms. Likewise, the VKM mandate does not include evaluations of herbicide residues in food and feed from genetically modified plants. The hybrid maize MON 88017 x MON 810 was produced by conventional crosses between inbred lines containing MON 88017 and MON 810 events to combine resistance to certain coleopteran and lepidopteran pests, and to confer tolerance towards glyphosate-containing herbicides. Maize MON 88017 was developed to express a modified Cry3Bb1 insecticidal protein, derived from Bacillus thuringiensis subsp. kumamotoensis , which confers protection against coleopteran target pests belonging to the genus Diabrotica such as Western corn rootworm ( Diabrotica virgifera virgifera ). MON 88017 is also developed to provide tolerance to the herbicidal active substance glyphosate by the introduction of a gene coding for the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), from Agrobacteri um tumefaciens strain CP4 (CP4 EPSPS). Maize MON 810 expresses the Cry1Ab insecticidal protein, derived from Bacillus thuringiensis subsp. k u rstaki, which confers protection against lepidopteran pests such as Ostrinia nubilaris and species belonging to the genus Sesamia. Molecular characterisation Southern and PCR analyses indicate that the recombinant inserts in the single maize events MON 88017 and MON 810 are retained in the stacked event MON 88017 x MON 810. Genetic stability of the inserts has previously been demonstrated in the single events. The levels of CP4 EPSPS, Cry3Bb1 and Cry1Ab proteins in grain and forage from the stacked event are comparable to the levels in the corresponding single events. Phenotypic analyses also indicate stability of the insect resistance and herbicide tolerance traits of the stacked event. Based on current knowledge and the previous assessments of the parental maize events, the VKM GMO Panel considers the molecular characterisation of maize MON 88017 x MON 810 satisfactory. Comparative assessment The applicant has performed comparative analyses of data from field trials located at representative sites and environments in USA during the 2002 growing season. With the exception of small intermittent variations and the insect resistance and herbicide tolerance conferred by the CP4 EPSPS, Cry3Bb1 and Cry1Ab proteins, the results showed no biologically relevant differences between maize stack MON 88017 x MON 810 and its conventional counterpart. Based on the assessment of available data, the VKM GMO Panel concludes that maize MON 88017 x MON 810 is compositionally, agronomically and phenotypically equivalent to its conventional counterpart, except for the new proteins. Food and feed safety assessment A whole food feeding study on broilers indicates no adverse health effects of maize MON 88017 x MON 810, and shows that it is nutritionally equivalent to conventional maize varieties. The Cry3Bb1, Cry1Ab and CP4 EPSPS proteins do not show relevant sequence resemblance to other known toxins or IgE-allergens, nor have they been reported to cause IgE-mediated allergic reactions. However, some studies have indicated a potential role of Cry-proteins as adjuvants in allergic reactions. Based on current knowledge, the VKM GMO Panel concludes that maize MON 88017 x MON 810 is nutritionally equivalent to conventional maize varieties. It is unlikely that the Cry3Bb1, Cry1Ab and CP4 EPSPS proteins will cause toxic or IgE-mediated allergic reactions to food or feed based on maize MON 88017 x MON 810 compared to conventional maize. Environmental risk assessment Considering the intended uses of maize MON 88017 x MON 810, excluding cultivation, the environmental risk assessment is concerned with accidental release into the environment of viable grains during transportation and processing, and indirect exposure, mainly through manure and faeces from animals fed grains from maize MON 88017 x MON 810. Maize MON 88017 x MON 810 has no altered survival, multiplication or dissemination characteristics, and there are no indications of an increased likelihood of spread and establishment of feral maize plants in the case of accidental release into the environment of seeds from maize MON 88017 x MON 810. Maize is the only representative of the genus Zea in Europe, and there are no cross-compatible wild or weedy relatives outside cultivation. The VKM GMO Panel considers the risk of gene flow from occasional feral GM maize plants to conventional maize varieties to be negligible in Norway. Considering the intended use as food and feed, interactions with the biotic and abiotic environment are not considered by the GMO Panel to be an issue. Overall conclusion Based on current knowledge, the VKM GMO Panel concludes that maize MON 88017 x MON 810 is compositionally, nutritionally, agronomically and phenotypically equivalent to its conventional counterpart except for the new proteins. It is unlikely that the Cry3Bb1, Cry1Ab and CP4 EPSPS proteins will cause an increased risk of toxic or IgE-mediated allergic reactions to food or feed based on maize MON 88017 x MON 810 compared to conventional maize varieties. The VKM GMO Panel concludes that maize MON 88017 x MON 810, based on current knowledge, is comparable to conventional maize varieties concerning environmental risk in Norway with the intended usage.

4.
Article | IMSEAR | ID: sea-189536

ABSTRACT

In preparation for a legal implementation of regulation 1829/2003, the Norwegian Scientific Committee for Food Safety (VKM) has been requested by the Norwegian Environment Agency and the Norwegian Food Safety Authority (NFSA) to conduct final food/feed and environmental risk assessments for all genetically modified organisms (GMOs) and products containing or consisting of GMOs that are authorized in the European Union under Directive 2001/18/EC or Regulation 1829/2003/EC. The request covers scope(s) relevant to the Gene Technology Act. The request does not cover GMOs that VKM already has conducted its final risk assessments on. However, the Agency and NFSA requests VKM to consider whether updates or other changes to earlier submitted assessments are necessary. The insect-resistant and glyphosate-tolerant genetically modified maize MON 88017 from Monsanto (Unique Identifier DAS-MON 88017-7) was approved in the EU under Regulation (EC) No 1829/2003 for food and feed uses, import and processing the 30th of October 2009 (Commission Decision 2009/814/EC). Genetically modified maize MON 88017 has previously been risk assessed by the VKM Panel on Genetically Modified Organisms (GMO), commissioned by the Norwegian Food Safety Authority and the Norwegian Environment Agency related and to the EFSA public hearing of the applications EFSA/GMO/CZ/2005/27 and EFSA/GMO/CZ/2008/54 in 2007 and 2010 (VKM 2007a, 2010a). In addition, MON 88017 has been evaluated by the VKM GMO Panel as a component of several stacked GM maize events and Regulation (EC) 1829/2003 (VKM 2007b, VKM 2008, VKM 2009, VKM 2010b). The food/feed and environmental risk assessment of the maize MON 88017 is based on information provided by the applicant in the applications EFSA/GMO/UK/2005/27 and EFSA/CZ/2008/CZ/2008/54, and scientific comments from EFSA and other member states made available on the EFSA website GMO Extranet. The risk assessment also considered other peer-reviewed scientific literature as relevant. The VKM GMO Panel has evaluated MON 88017 with reference to its intended uses in the European Economic Area (EEA), and according to the principles described in the Norwegian Food Act, the Norwegian Gene Technology Act and regulations relating to impact assessment pursuant to the Gene Technology Act, Directive 2001/18/EC on the deliberate release into the environment of genetically modified organisms, and Regulation (EC) No 1829/2003 on genetically modified food and feed. The Norwegian Scientific Committee for Food Safety has also decided to take account of the appropriate principles described in the EFSA guidelines for the risk assessment of GM plants and derived food and feed (EFSA 2011a), the environmental risk assessment of GM plants (EFSA 2010a), selection of comparators for the risk assessment of GM plants (EFSA 2011b) and for the post-market environmental monitoring of GM plants (EFSA 2011c). 8.04.2016 The scientific risk assessment of maize MON 88017 include molecular characterisation of the inserted DNA and expression of novel proteins, comparative assessment of agronomic and phenotypic characteristics, nutritional assessments, toxicology and allergenicity, unintended effects on plant fitness, potential for gene transfer, interactions between the GM plant and target and non-target organisms, effects on biogeochemical processes. It is emphasised that the VKM mandate does not include assessments of contribution to sustainable development, societal utility and ethical considerations, according to the Norwegian Gene Technology Act and Regulations relating to impact assessment pursuant to the Gene Technology Act. These considerations are therefore not part of the risk assessment provided by the VKM Panel on Genetically Modified Organisms. Genetically modified maize MON 88017 expresses a Cry3Bb1 insecticidal protein, derived from Bacillus thuringiensis subsp. kumamotoensis, which confers protection against coleopteran target pests belonging to the genus Diabrotica such as Western corn rootworm (Diabrotica virgifera virgifera). MON 88017 is also developed to provide tolerance to the herbicidal active substance glyphosate by the introduction of a gene coding for the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), from Agrobacterium tumefaciens strain CP4 (CP4 EPSPS). Molecular characterisation The molecular characterisation data has established that only one copy of the transgene is integrated in the maize genomic DNA. Appropriate analyses of the integration site including sequence determination of the inserted DNA and flanking regions and bioinformatics analysis have been performed. Bioinformatics analyses of junction regions have demonstrated the absence of any potential new ORFs coding for known toxins or allergens. The genetic stability of transformation event MON 88017 was demonstrated at the genomic level over multiple generations by Southern analysis. Segregation analysis shows that event MON 88017 is inherited as a dominant, single locus trait. The VKM GMO Panel considers the molecular characterisation of maize MON 88017 satisfactory. Comparative assessment Comparative analyses of maize MON 88017 and its conventional counterpart have been performed during field trials located at representative sites and environments in Europe and USA. A total of 12-16 different conventional maize varieties were included in the field trials and used as references. With the exception the insect resistance and herbicide tolerance conferred by the Cry3Bb1 and CP4 EPSPS proteins, no biologically relevant differences were found between maize MON 88017 and controls. Based on the assessment of available data, the VKM GMO Panel concludes that maize MON 88017 is compositionally, agronomically and phenotypically equivalent to its conventional counterpart except for the new proteins. 8.04.2016 VKM Report 2016:12 Food and feed safety assessment Whole food feeding studies on rats and broilers indicate no adverse health effects of maize MON 88017. These studies also show that maize MON 88017 is nutritionally equivalent to conventional maize. The Cry3Bb1 and CP4 EPSPS proteins do not show relevant sequence resemblance to other known toxins or IgE-allergens, nor have they been reported to cause IgE-mediated allergic reactions. However, some studies have indicated a potential role of Cry-proteins as adjuvants in allergic reactions. Based on current knowledge, the VKM GMO Panel concludes that maize MON 88017 is nutritionally equivalent to conventional maize varieties. It is unlikely that the Cry3Bb1 and CP4 EPSPS proteins will cause toxic or IgE-mediated allergic reactions to food or feed based on maize MON 88017 compared to conventional maize. Environmental risk assessment Considering the intended uses of maize MON 88017, excluding cultivation, the environmental risk assessment is concerned with accidental release into the environment of viable grains during transportation and processing, and indirect exposure, mainly through manure and faeces from animals fed grains from maize MON 88017. Maize MON 88017 has no altered survival, multiplication or dissemination characteristics, and there are no indications of an increased likelihood of spread and establishment of feral maize plants in the case of accidental release into the environment of seeds from maize MON 88017. Maize is the only representative of the genus Zea in Europe, and there are no cross-compatible wild or weedy relatives outside cultivation. The VKM GMO Panel considers the risk of gene flow from occasional feral GM maize plants to conventional maize varieties to be negligible in Norway. Considering the intended use as food and feed, interactions with the biotic and abiotic environment are not considered by the GMO Panel to be an issue. 8.04.2016. VKM Report 2016:12 Overall conclusion Based on current knowledge, the VKM GMO Panel concludes that maize MON 88017 is compositionally, nutritionally, agronomically and phenotypically equivalent to its conventional counterpart except for the new proteins. It is unlikely that the Cry3Bb1 and CP4 EPSPS proteins will cause an increased risk of toxic or IgE-mediated allergic reactions to food or feed based on maize MON 88017 compared to conventional maize. The VKM GMO Panel concludes that maize MON 88017, based on current knowledge, is comparable to conventional maize varieties concerning environmental risk in Norway with the intended usage.

5.
Article | IMSEAR | ID: sea-189535

ABSTRACT

Genetically modified LLcotton25 from Bayer Crop Science expresses the bar gene from Streptomyces hygroscopicus ATCC21705 encoding the phosphinothricin-acetyl–transferase (PAT) enzyme, which confers tolerance to the active herbicide glufosinate-ammonium. Updated bioinformatics analyses of the inserted DNA and flanking sequences in LLCotton25 have not indicated potential production of putatively harmful toxins or allergens caused by the genetic modification. Genomic stability of the functional insert and consistent expression of the bar gene have been shown over several generations of LLCotton25. Data from field trials indicate that with the exception of the newly introduced trait, LLCotton25 is compositionally, phenotypically and agronomically equivalent to its conventional counterpart Coker 312 and other cotton cultivars. A 33-day nutritional assessment trial with broilers has not revealed adverse effects of cottonseed meal from LLCotton25. Toxicity testing of the PAT protein in a repeated-dose dietary exposure test with rats did not indicate adverse effects. The PAT protein produced in LLCotton25 does not show amino acid sequence resemblance to known toxins or IgEdependent allergens, nor has it been reported to cause IgE-mediated allergic reactions. It is therefore unlikely that the PAT protein will cause toxic or IgE-mediated allergic reactions to food or feed containing LLCotton25 compared to conventional cotton cultivars. Cotton is not cultivated in Norway, and there are no cross-compatible wild or weedy relatives of cotton in Europe. Based on current knowledge and with the exception of the introduced traits, the VKM GMO Panel concludes that LLCotton25 is nutritionally, compositionally, phenotypically and agronomically equivalent to and as safe as its conventional counterpart and other cotton cultivars. Considering the intended uses, which exclude cultivation, the VKM GMO Panel concludes that LLCotton25 does not represent an environmental risk in Norway.

6.
Article | IMSEAR | ID: sea-189534

ABSTRACT

Genetically modified cotton GHB614 from Bayer Crop Science expresses a modified epsps gene (2mepsps) gene from maize encoding the enzyme 5-enolpyruvylshikimate 3-phosphate synthase (2 mEPSPS), which confers tolerance to the herbicide glyphosate. Updated bioinformatics analyses of the inserted DNA and flanking sequences in GHB614 have not indicated potential production of putatively harmful toxins or allergens caused by the genetic modification. Genomic stability of the functional insert and consistent expression of the 2mepsps gene has been shown over several generations of cotton GHB614. Field trials indicate that with the exception of the introduced trait, cotton GHB614 is compositionally, phenotypically and agronomically equivalent to its conventional counterpart Coker 312 and other cotton cultivars. A 42-day nutritional assessment trial with broilers did not reveal adverse effects of cottonseed meal from GHB614. The 2mEPSPS protein produced in GHB614 does not show amino acid sequence resemblance to known toxins or IgE-dependent allergens, nor has it been reported to cause IgE-mediated allergic reactions. It is therefore unlikely that the 2 mEPSPS protein will cause toxic or IgE-mediated allergic reactions to food or feed containing cotton GHB614 compared to conventional cotton cultivars. Cotton is not cultivated in Norway, and there are no cross-compatible wild or weedy relatives of cotton in Europe. Based on current knowledge and with the exception of the introduced trait, the VKM GMO Panel concludes that cotton GHB614 is nutritionally, compositionally, phenotypically and agronomically equivalent to and as safe as its conventional counterpart and other cotton cultivars. Considering the intended uses, which exclude cultivation, the VKM GMO Panel concludes that GHB614 does not represent an environmental risk in Norway.

SELECTION OF CITATIONS
SEARCH DETAIL